RoHS Compliant \& Pb-Free Product

Typical Applications

- CATV Distribution Amplifiers
- Cable Modems
- Broadband Gain Blocks
- Laser Diode Driver
- Return Channel Amplifier
- Base Stations

Product Description

The RF2312 is a general purpose, low cost high linearity RF amplifier IC. The device is manufactured on an advanced Gallium Arsenide Heterojunction Bipolar Transistor (HBT) process, and has been designed for use as an easily cascadable 75Ω gain block. The gain flatness of better than 0.5 dB from 5 MHz to 1000 MHz , and the high linearity, make this part ideal for cable TV applications. Other applications include IF and RF amplification in wireless voice and data communication products operating in frequency bands up to 2500 MHz . The device is self-contained with 75Ω input and output impedances, and requires only two external DC biasing elements to operate as specified.

Optimum Technology Matching ${ }^{\circledR}$ Applied

\square Si BJT	\square GaAs HBT	\square GaAs MESFET
\square Si Bi-CMOS	\square SiGe HBT	\square Si CMOS
\square InGaP/HBT	\square GaN HEMT	\square SiGe Bi-CMOS

Functional Block Diagram

NOTES:

1. Shaded lead is pin 1.
2. All dimensions are excluding flash, protrusions or burrs.
3. Lead coplanarity: 0.005 with respect to datum " A ".
4. Package surface finish: Matte (Charmilles \#24~27).

Package Style: SOIC-8

Features

- DC to well over 2500 MHz Operation
- Internally Matched Input and Output
- 15dB Small Signal Gain
- 3.8 dB Noise Figure
- +20 dBm Output Power
- Single 5V to 12V Positive Power Supply

Ordering Information

RF2312	Linear General Purpose Amplifier
RF2312 PCBA	Fully Assembled Evaluation Board -75Ω
RF2312 PCBA	Fully Assembled Evaluation Board -50Ω

RF Micro Devices, Inc.	Tel (336) 664 1233
7628 Thorndike Road	Fax (336) 6640454
Greensboro, NC 27409, USA	http://www.rfmd.com

Greensboro, NC 27409, USA

Absolute Maximum Ratings

Parameter	Rating	Unit
Input RF Power	+18	dBm
Output Load VSWR	$20: 1$	
Ambient Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

4 Caution! ESD sensitive device.
RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. RoHS marking based on EUDirective2002/95/EC (at time of this printing). However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

RF2312

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Overall (75ת)	14.5	DC to 250016	$\begin{aligned} & 4.3 \\ & 4.8 \end{aligned}$	$\begin{gathered} \mathrm{MHz} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V}, \text { Freq }=900 \mathrm{MHz}, \\ & \mathrm{R}_{\mathrm{C}}=30 \Omega, 75 \Omega \text { System } \end{aligned}$
Frequency Range					3 dB Bandwidth
Gain					
Noise Figure		3.8			From 50 MHz to $300 \mathrm{MHz},-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Input VSWR		4.2			From 300 MHz to $1000 \mathrm{MHz},-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
		1.3:1	2:1		From 50 MHz to $900 \mathrm{MHz},-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Appropriate values for the DC blocking capacitors and bias inductor are required to maintain this VSWR at the intended operating frequency range.
Output VSWR		1.2:1	1.75:1		From 50 MHz to $300 \mathrm{MHz},-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Appropriate values for the DC blocking capacitors and bias inductor are required to maintain this VSWR at the intended operating frequency range.
		$1.4: 1$ $1.5: 1$	$\begin{aligned} & \text { 2:1 } \\ & \text { 2:1 } \end{aligned}$		From 300 MHz to $500 \mathrm{MHz},-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. From 500 MHz to $900 \mathrm{MHz},-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Output IP_{3}	+36	+38		dBm	At 100 MHz
Output IP_{3}	+33	+36		dBm	At 500 MHz
Output IP_{3}	+28	+30		dBm	At 900 MHz
Output $\mathrm{P}_{1 \mathrm{~dB}}$	+21	+22		dBm	At 100 MHz
Output $\mathrm{P}_{1 \mathrm{~dB}}$	+20	+21		dBm	At 500 MHz
Output $\mathrm{P}_{1 \mathrm{~dB}}$	+17	+18.5		dBm	At 900 MHz
Saturated Output Power		+23		dBm	At 100 MHz
Saturated Output Power		+22.5		dBm	At 500 MHz
Saturated Output Power		+20.5		dBm	At 900 MHz
Reverse Isolation		20		dB	
77 Channels					77 Channels to 550 MHz at 10 dBmV , 33 channels to 760 MHz at 0 dBmV flat at DUT input
cso		>86		dBc	61.25 MHz
		>86		dBc	83.25 MHz
		76		dBc	193.25 MHz
		72		dBc	313.2625 MHz
		64		dBc	547.25 MHz
CTB		>86		dBc	61.25 MHz
		>86		dBc	83.25 MHz
		86		dBc	193.25 MHz
		84		dBc	313.2625 MHz
		83		dBc	547.25 MHz
CNR 110 Channels	65	66		dB	
	65				110 Channels, 10dBmV/channel at input
CSO		>86		dBc	61.25 MHz
		>86		dBc	83.25 MHz
		76		dBc	193.25 MHz
		70		dBc	313.2625 MHz
		64		dBc	547.25 MHz
СTB		84		dBc	61.25 MHz
		86		dBc	83.25 MHz
		85		dBc	193.25 MHz
		81		dBc	313.2625 MHz
		80		dBc	547.25 MHz
Cross Modulation		77		dBc	61.25 MHz
		74		dBc	445.25 MHz
CNR		66		dB	

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Overall (75ת Push-Pull)					$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V} \text { or } 24 \mathrm{~V}, 75 \Omega \text { System, } \\ & \mathrm{RF}_{\mathrm{IN}}=-10 \mathrm{dBm} \end{aligned}$
Frequency Range		DC to 150		MHz	
Gain		15		dB	
Noise Figure		5.0		dB	From 5 MHz to $150 \mathrm{MHz},-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Input VSWR		1.1:1			
Output VSWR		1.2:1			
Output IP_{2}		+71		dBm	At 10 MHz
		+72		dBm	At 30 MHz
		+74		dBm	At 50 MHz
Output IP_{3}		+40		dBm	At 10 MHz
		+40		dBm	At 30 MHz
		+40		dBm	At 50 MHz
Second Harmonic		-73		dBc	At 10 MHz
		-65		dBc	At 30 MHz
		-65		dBc	At 50 MHz

Pin	Function	Description	Interface Schematic
1	RF IN	RF input pin. This pin is NOT internally DC-blocked. A DC-blocking capacitor, suitable for the frequency of operation, should be used in all applications. The device has internal feedback, and not using a DCblocking capacitor will disable the temperature compensation. The bias of the device can be controlled by this pin. Adding an optional $1 \mathrm{k} \Omega$ resistor to ground on this pin reduces the bias level, which may be compensated for by a higher supply voltage to maintain the appropriate bias level. The net effect of this is an increased output power capability, as well as higher linearity for signals with high crest factors. DC-coupling of the input is not allowed, because this will override the internal feedback loop and cause temperature instability.	
2	GND	Ground connection. For best performance, keep traces physically short and connect immediately to ground plane. Each ground pin should have a via to the ground plane.	
3	GND	Same as pin 2.	
4	GND	Same as pin 2.	
5	GND	Same as pin 2.	
6	GND	Same as pin 2.	
7	GND	Same as pin 2.	
8	RF OUT	RF output and bias pin. Because DC is present on this pin, a DC-blocking capacitor, suitable for the frequency of operation, should be used in most applications. For biasing, an RF choke in series with a resistor is needed. The value for the resistor R_{C} is $30 \Omega(0.5 \mathrm{~W})$ for $\mathrm{V}_{C C}=9 \mathrm{~V}$ and 21Ω for $\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}$. The DC voltage on this pin is typically 6.0 V with a current of 100 mA . In lower power applications the value of R_{C} can be increased to lower the current and V_{D} on this pin.	

Application Schematic 5 MHz to 50 MHz Reverse Path

NOTE 1:
Optional resistor R_{S} can be used to maintain the correct bias level at higher supply voltages. This is used to increase output capability or linearity for signals with high crest factors.

Application Schematic 10dB Gain

R5 is used to maintain the correct bias level at higher supply voltages and is also required in this configuration. The RC network of R2 and C3 should be kept physically as short as possible. R2 can be adjusted as required to improve the impedance matching. R6 and R7 reduce the typical gain by increasing the emitter resistance. L1 should be at least 200Ω reactive at the lowest operating frequency. C1 and C 2 should be less than 10Ω at the lowest operating frequency. C4 and C 5 improve gain flatness.

Application Schematic Push-Pull Standard Voltage

Application Schematic Push-Pull 24 V

Evaluation Board Schematic - 50Ω

(Download Bill of Materials from www.rfmd.com.)

Evaluation Board Schematic - 75Ω

NOTE: For 5 V applications, R1 to R4 may be removed (shorted). This will result in degraded distortion performance.

Evaluation Board Layout - 50Ω
 2.02" x 2.02"

Board Thickness 0.031", Board Material FR-4

Evaluation Board Layout - 75 Ω
 Standard Voltage
 $1.40 " \times 1.40 "$
 Board Thickness 0.062", Board Material FR-4

Evaluation Board Layout - 75Ω
 Push-Pull, Standard Voltage
 $1.70 "$ x $1.50 "$
 Board Thickness 0.062", Board Material FR-4

Evaluation Board Layout - 75
Push-Pull, 24V
$1.70^{\prime \prime} \times 1.50 "$
Board Thickness 0.062", Board Material FR-4

Output Third Order Intercept Point (OIP3) versus $P_{\text {IN }}$

IM3 Products versus $P_{\text {out }}$

Output P1dB versus Frequency

75 Ohms, ICC $=100 \mathrm{~mA}, \mathrm{Temp}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

75 Ohms, $\mathrm{ICC}=\mathbf{1 1 0} \mathrm{mA}, \mathrm{Temp}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

